

Finding the Needle...Again...and Again...and Again: Lessons Learned from NCI Programs

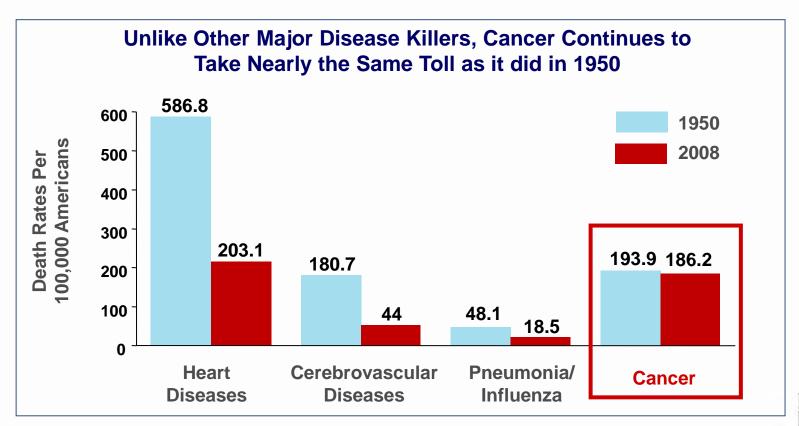
Jerry S.H. Lee, Ph.D.

Health Sciences Director

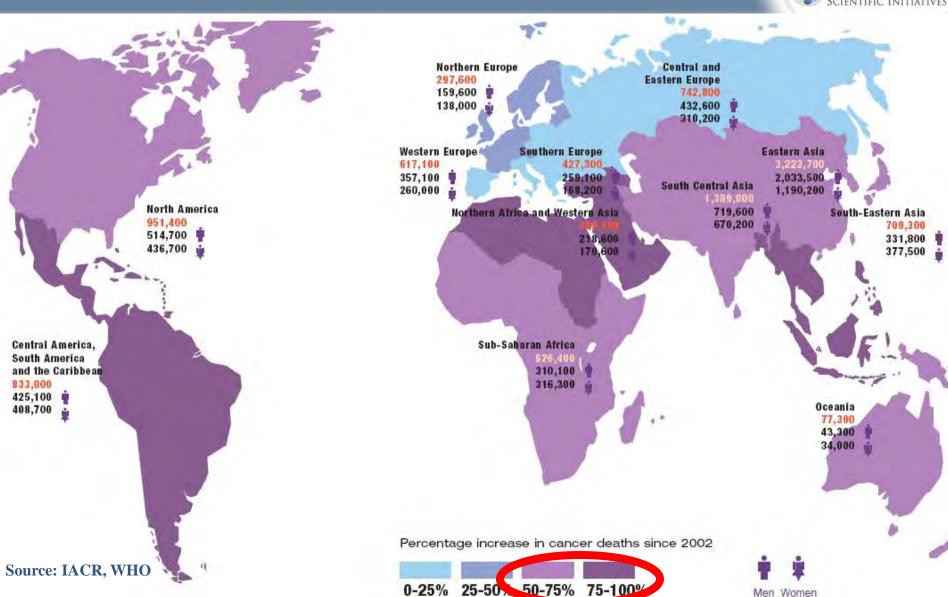
Deputy Director, Center for Strategic Scientific Initiatives (CSSI)
Deputy Director, Center for Cancer Genomics (CCG)
Office of the Director, National Cancer Institute (NCI)
National Institutes of Health (NIH)

World CTC Summit, Boston MA

November 13, 2012



In the U.S., Cancer Continues to Represent an Enormous Burden


- 569,490 Americans died of cancer in 2010
- 1,529,560 Americans will be diagnosed with cancer this year
- \$124.6 billion in 2010 for cancer healthcare costs

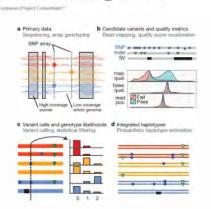
Global Burden: By 2020, Cancer Mortality 10 M/yr (Incidence 16 M/yr)

Unprecedented Amount of Scientific Knowledge: Omics(ssss)

A map of human genome variation from population-scale sequencing

nature

2001


nature

2010

NATURE

1 NOVEMBER 2012

An integrated map of genetic variation from 1,092 human genomes

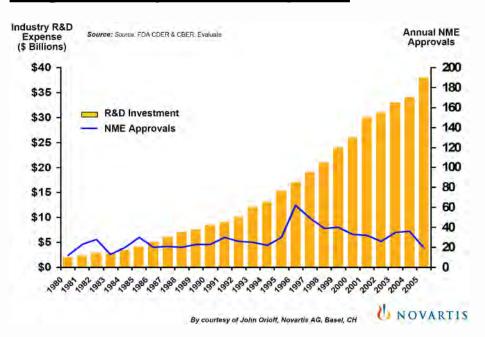
1923

2005

2012

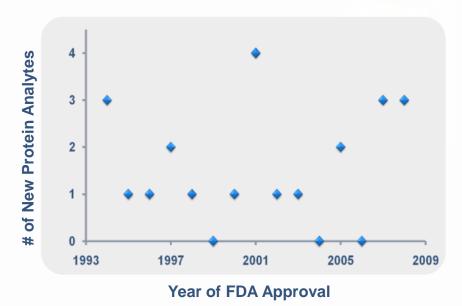
49,024 pubs

54,587 pubs


87,793 pubs

38,506 pubs

Is More Knowledge Yielding More Solutions for Patients?



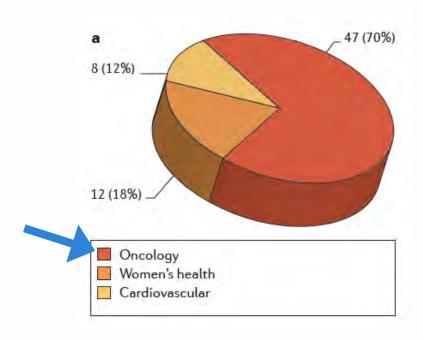
Drug Discovery and Development

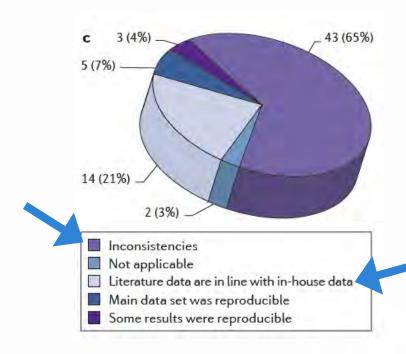
- 10 15 years at ~ \$1.8 billion*
- 2007: 19 NMEs [lowest since 1983]
- 2008: 21 NMEs [29% new-in-class]
- 2009: 24 NMEs [17% new-in-class]

Diagnostic Biomarkers

- Averaging 1.5 FDA approvals per year[†]
- 1000's of samples
- Balancing complexity of biology against heterogeneity of patients

Maybe...but can it be more efficient?




Too Many Papers: Is It Just Overwhelming Literature?

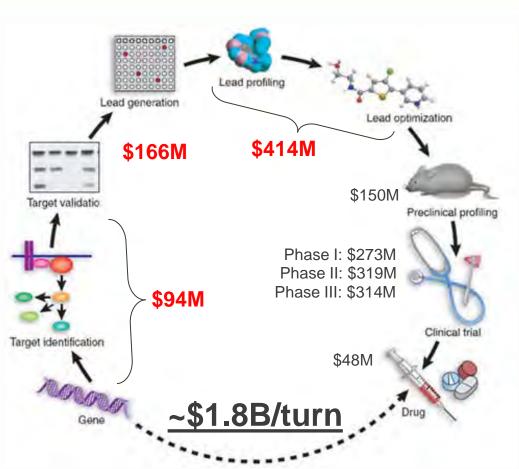
NATURE REVIEWS | DRUG DISCOVERY

Believe it or not: how much can we rely on published data on potential drug targets?

Innovation Exists in Public Sector Research Institutions (PSRIs)

Table 1. Number of Drug Products Approved by the Food and Drug Administration and Originating from Public-Sector Research, According to Therapeutic Area, 1970–2009.

Therapeutic Area	Number
Total	153
Hematology or oncology	40
Infectious disease	36
Cardiology	12
Metabolic disease	12
Central nervous system	12
Dermatology	7
Renal disease	7
Ophthalmology	6
Immunology	6
Gastroenterology	4
Women's health	3
Allergy	2
Pulmonary disease	2
Urology	2
Anesthesiology	1
Dental disorders	1


Type of Review	New Molecular Entity	New Ester, Salt, or Derivative	New Formulation	New Combination	New Manufacturer	New Indication	Already Marketed	Total
Priority review								
Discovered by PSRI (no.)	44	1	17	3	0	1†	0	66
All FDA approvals (no.)	209	6	99	20	14	0	0	348
Rate of PSRI discovery (%)	21.1	16.7	17.2	15.0	0	NA	NA	19.0
Standard review								
Discovered by PSRI (no.)	20	0	36	6	7.	8	0	77
All FDA approvals (no.)	274	33	631	96	137	10	12	1193
Rate of PSRI discovery (%)	7.3	0	5.7	6.3	5.1	80.0	0	6.5
All approvals								
Discovered by PSRI (no.)	64	1	53	9	7	9	0	143
All FDA approvals (no.)	483	39	730	116	151	10	12	1541
Rate of PSRI discovery (%)	13.3	2.6	7.3	7.8	4.6	90.0	0	9.3

Over the past 40 years,

- 153 FDA approvals were carried out in PSRIs (~9.3% of overall approvals)
 - o 93 small molecule
 - o 36 biologics
 - o 15 vaccines
 - o 8 IVDs
 - o 1 over-the-counter drug
- Most prolific PSRIs include:
 - o NIH (22 products)
 - UC system (11 products)
 - MSKCC (8 products)
 - o Emory (7 products)
 - Yale (6 products)
- Virtually all important, innovative vaccines that have been introduced in the last 25 years have been created by PSRIs

Translation Pace: How To Break Out of Current Paradigm?

Turning the Crank...

Key Needs (from community '02)

- Standards and protocols
- Real-time, public release of data
- Large, multi-disciplinary teams
- Pilot-friendly team environment to share failures and successes
- Team members with trans-disciplinary training

The potential to transform cancer drug discovery and diagnostics

National Cancer Program: Stakeholders

~\$18 B per year

Private Industry \$9.2 B NCI \$5 B

Fed/State \$3.4 B

NPO/Foundations, \$0.6 B

National Cancer Institute Organization

Director Harold Varmus, MD

National Cancer Institute

\$5.07B

Deputy Director Douglas Lowy, MD

CSSI CCG ~\$190 M (~4%)

Center for Cancer Research

Division of Cancer Epidemiology and Genetics Division of Cancer Treatment and Diagnosis

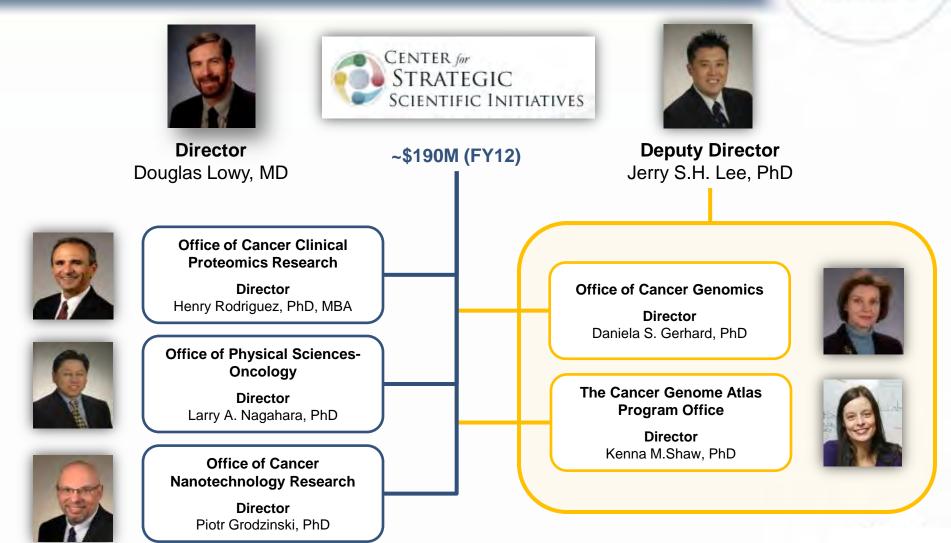
Division of Cancer Biology

Division of Cancer Control and Population Sciences

Office of the

Director

Division of Cancer Prevention


Division of Extramural Activities

Conducting – Intramural

Funding – Extramural

NCI Center for Strategic Scientific Initiatives (CSSI): Concept Shop

NCI Center for Strategic Scientific Initiatives (CSSI): Concept Shop

~\$190M (FY12)

Deputy Director Jerry S.H. Lee, PhD

<u>Mission</u>

"...to create and uniquely implement exploratory programs focused on the development and integration of advanced technologies, <u>trans-disciplinary approaches, infrastructures, and standards</u>, to accelerate the <u>creation and broad deployment</u> of <u>data, knowledge, and tools</u> to empower the <u>entire cancer research continuum</u> in better understanding and leveraging knowledge of the cancer biology space <u>for patient benefit</u>..."

2005, **2010**

2008

2011

& Development (CTD²)

2004, 2008 <u>2005, 2008</u> 2010

Example #1: Cancer Genomics-Taking a Page from Engineers

Disease of Genomic Alterations

- Copy number
- Expression (regulation of)
- Regulation of translation
- Mutations
- Epigenome

- Systematic identification of all genomic changes
- Repeat (a lot) for individual cancer
- Repeat for many cancers
- Make it publically available

N.	
	**
	4

Sat	urated steam	Si	sperheated s	team	
Temp (°C)	Vapour enthalpy	Specific volume (mi/kg)	Density (kg/mi)	Specific volume (m:/kg) at 250°C at 30	
00.1			0.590		2.691
	00.070		-,		1.342
					0,893
					0,668
					0,533
					0,443
164,2	659,5	0,278	3,597	0,343	0,379
169,6	660,8	0,245	4,082	0,299	0,331
174,5	661,9	0,219	4,566	0,265	0,293
179,1	662,9	0,198	5,051	0,238	0,263
187,1	664,5	0,166	6,024	0.196	0,218
194,1	665,7	0,143	6,993	0,167	0,186
200,4	666,7	0.126	7,937	0.145	0.162
206.1	667.4	0.112	8,929	0.128	0.143
211.4	668.0	0.101	9.901	0.114	0.128
216.2	668.4	0.092	10.870	0.103	0.116
					0.106
					0.097
					0.089
				-,	0.083
	7emp (°C) 99,1 119,6 132,9 142,9 151,1 158,1 164,2 169,6 174,5 179,1 187,1 194,1 200,4 206,1 211,4	Temp (°C) Vapour (enthulpy (kcalkge) 99.1 638.8 119.6 646.2 132.9 653.7 142.9 653.7 151.1 650.0 164.2 659.5 169.6 669.2 179.1 662.9 179.1 662.9 194.1 665.7 200.4 666.7 201.2 668.7 211.4 668.0 212.2 668.7 220.7 668.7 220.5 669.0 220.9 669.1	(°C) enhabys (kealbag) volume (wealbag) 99.1 683.8 1.725 119.6 646.2 0.902 112.9 685.7 0.471 151.1 656.0 0.382 158.1 657.0 0.321 164.2 659.5 0.278 109.6 660.9 0.219 179.1 662.9 0.198 187.1 666.5 0.143 194.1 665.7 0.143 2004 666.7 0.126 211.4 668.0 0.101 211.4 668.4 0.092 220.7 668.7 0.085 225.0 669.0 0.885 225.0 669.1 0.078	Temp (°C) Vapour (heal/hg) Specific (white) Density (hg/m) 99.1 638.8 1.725 0.580 119.6 646.2 0.902 1.109 132.9 650.6 0.617 1.621 142.9 653.7 0.471 2.213 151.1 656.0 0.382 2.618 158.1 657.0 0.321 3.115 164.2 659.5 0.278 3.597 169.6 660.8 0.245 4.882 174.5 661.9 0.219 4.566 179.1 662.9 0.198 5.051 187.1 664.5 0.166 6.024 194.1 665.7 0.143 6.993 200.4 666.7 0.126 7.937 206.1 667.4 0.112 8.929 211.4 668.0 0.101 9.901 216.2 668.4 0.992 10.870 220.7 668.7 0.685 11.765	Temp

Steam table (Reference)

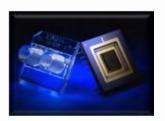
Many "Thermometers": Heterogeneity of Platforms

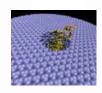
454

Illumina

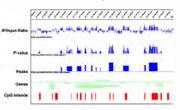
SOLID

Complete Genomics

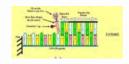

Helicos


Visigen

PacBio


Ion-Torrent

Oxford Molecular


Nimblegen

febit Febit

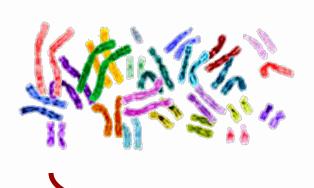
LaserGen

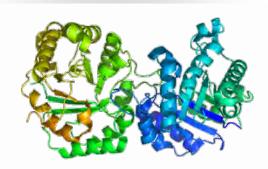
Intelligent Biosystems

NABsys

Halycon

Agilent


Key Innovation: Samples <u>AND</u> Handling Matter!



Genomics

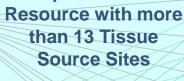
Proteomics

All Depend On High-Quality, Annotated Human Biospecimens

"Garbage In...Garbage Out"

TCGA: Connecting Multiple Standardized Sources, Experiments, and Data Types

Three Cancers- Pilot


Multiple data types

Clinical diagnosis

Treatment history

Histologic diagnosis

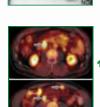
glioblastoma multiforme (brain)

Biospecimen Core

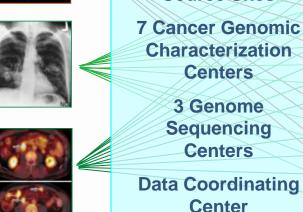
Pathologic status Tissue anatomic site **Surgical history**

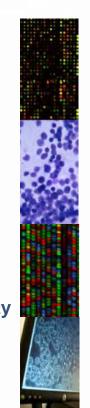
Characterization

Gene expression Chromosomal copy number


3 Genome Sequencing

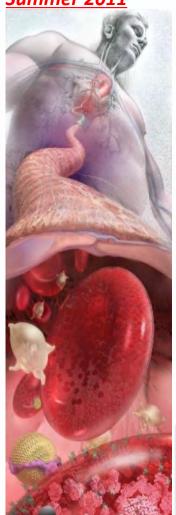
Loss of heterozygosity

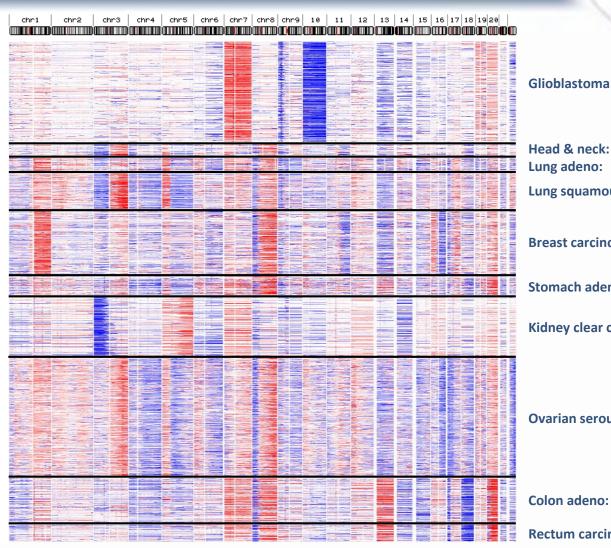

Methylation patterns


miRNA expression **DNA** sequence

squamous carcinoma (lung)

serous cystadenocarcinoma (ovarian)




Genomic "Steam Table"

Summer 2011

Glioblastoma:		470

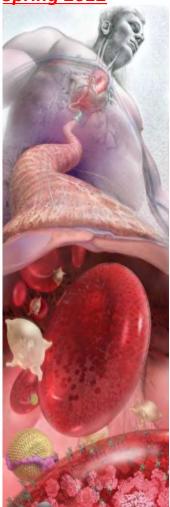
Lung adeno:	57
Lung squamous:	159

51

east carcinoma:	180
-----------------	-----

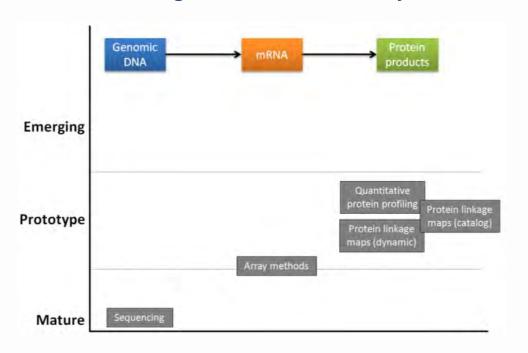
Ovarian serous: 520

Colon adeno: 198


Rectum carcinoma:

Genomic "Steam Table"

Glioblastoma:	535
Brain lower grade glioma: Head & neck: Thyroid carcinoma: ung adeno:	80 165 85 205
ung squamous:	211
Breast carcinoma:	783
tomach adeno:	149
(idney clear carc:	489
Ovarian serous:	520
Iterine corpus end. car.:	363
Prostate adenocarcinoma:	82
. ootato aaciiooai oiiioiilai	02


564

Example #2: Cancer Proteomics and Mass Spectrometry

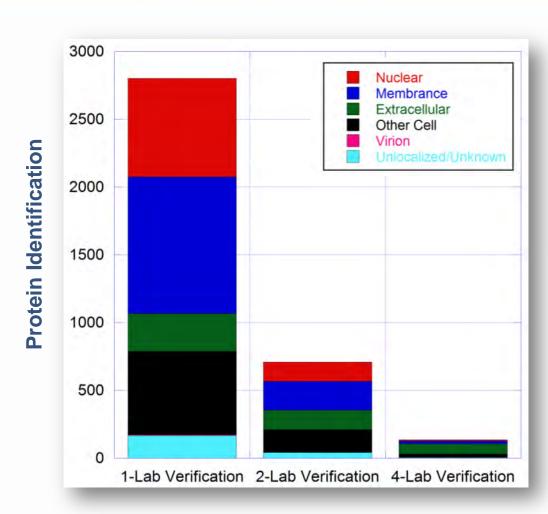
Technologies for Quantitative Analysis

Major Challenges

- Analytical variability in platforms
- Lack of standards, protocols, and reference data
- No consensus on data acquisition, analysis, and open access reporting of raw data

Unlike genomic technologies, proteomic technologies were not yet fully mature

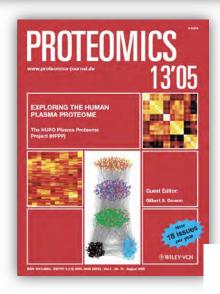
Heterogeneity of Platforms and Reproducibility Challenges



Reproducibility of Clinical Proteomics in 2005

REGULAR ARTICLE

DOI 10.1002/pmic.200600358


Proteomics 2006. 5, 3226-3245

2005

Overview of the HUPO Plasma Proteome Project: Results

Overview of the HUPO Plasma Proteome Project: Results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database

Gilbert S. Omenn', David J. States', Marcin Adamski', Thomas W. Blackwell', Rajasree Menon', Henning Hermjakob', Rolf Apweiler', Brian B. Haab', Richard J. Simpson', James S. Eddes', Eugene A. Kapp', Robert L. Moritz', Daniel W. Chan's, Alex J. Raf', Arie Admon's, Ruedi Aebersold', Jimmy Eng's, William S. Hancock', Stanley A. Helta'o, Helmut Meyer', Young-Ki Paik'z, Jong-Shin Yool's, Peipei Ping', Joel Pounds's, Joshua Adkins's, Xiaohong Qiani's, Rong Wang'i', Valerie Wasinger's, Chi Yue Wu's, Xiaohang Zhao'o, Rong Zeng's), Alexander Archakov'z, Akira Tsugita's, Ilan Beer'z, Akhilesh Pandey's, Michael Pisano's, Philip Andrews', Harald Tammer'z, David W. Speicher's and Samir M. Hanash'.

Clinical Proteomic Technologies for Cancer (CPTAC) Pilot

nature biotechnology

Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma

Reproducibility

- **First demonstration** that MRM is highly reproducible across multiple laboratories and technology platforms
- **Community Resource**: Antibody Characterization Laboratory Launched

Data Sharing ("Amsterdam Principles")

Timing

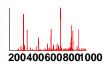
Data generated by individual investigators should be released into the public domain at the latest upon publication while data generated by community resource projects should be released upon generation following appropriate QA/QC procedures

Comprehensiveness

High quality raw data (e.g., mass spectral, protein/affinity array data) be released to the public. They should be well annotated with metadata, information on data quality, and identification quality control data

Format

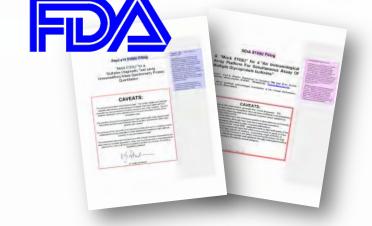
Open access to proteomic data requires community-supported standardized formats, controlled vocabularies, reasonable reporting requirements, and publicly available central repositories



May 2009

Recommendations from the 2008 International Meeting on Proteomics Data Release and Sharing Policy: The Amsterdam Principles

> Henry Rodriguez,* 1 Mike Snyder, 1 Mathias Uhlén, 9 Phil Andrews, 1 Ronald Beavis, Christoph Borchers," Robert J. Chalkley,
>
> Sang Yun Cho,
>
> Katie Cottingham,
>
> Michael Dunn,
>
> Christoph Borchers, Robert J. Chalkley, Sang Yun Cho,
>
> Katie Cottingham, Tomasz Dylag,+ Ron Edgar,[□] Peter Hare,* Albert J. R. Heck,* Roland F. Hirsch,* Karen Kennedy, Patrik Kolar, Hans-Joachim Kraus, Parag Mallick, Alexey Nesvizhskii, Alexey Nesvizhskii, Nesvizhskii, Parag Mallick, Nesvizhskii, Ne Peipei Ping," Fredrik Pontén," Liming Yang, John R. Yates, Stephen E. Stein, Henning Hermjakob, Christopher R. Kinsinger, and Rolf Apweiler

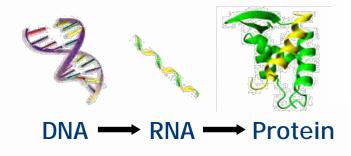

Center for Strategic Scientific Initiatives, National Cancer Institute, National Institutes of Health, Bethesda Maryland, 2015, Department of Molecular, Cellular, and Developmental Biology, Yale University, New Husen, Connecticat 6620, RH Biotechnology, KHI - Albalyan University Center, Stackholm, Sweden, Department of Biology, Tale University, New Husen, Biological Chemistry, University of Michigan Melical School, Ann Arbor, Michigan 48190, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada, University of Victoria Proteomics Centre, Victoria, British Columbia, Canada, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, 94158. Yonsei Proteome Research Center, Yonsei

CPTAC Pilot: Crosstalk with FDA and Educating Community

- Analytical Validation Review Documents
 - CPTAC/FDA Workshop identify analytical validation needs for clinical proteomic technologies in the context of intended use

• Outputs:

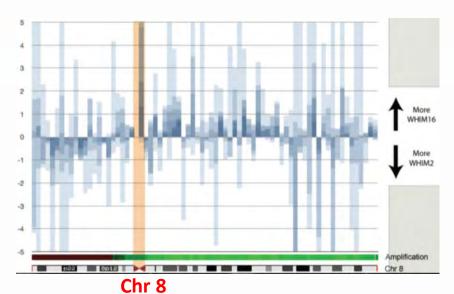
- <u>Public mock 510(k) pre-applications</u> that serve as review documents on:
 - multiplex MRM-MS assay
 - multiplex affinity-based assay
- Published in <u>special issue of Clinical Chemistry</u> (by AACC), that informs research community and FDA to technology platforms that will likely be part of future 510k submissions



Clinical Proteomic Tumor Analysis Centers (CPTAC Phase II)

Phase II Launched Sept 2011

- Analyze matched TCGA samples using two approaches
 - Targeting genome to proteome
 - Mapping proteome to genome
- Develop validated and quantitative assays and reagents
- Distribute raw and analyzed data via public data portal



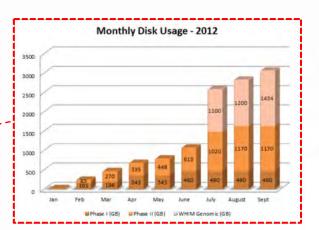
CPTAC Phase II: Highlights, Progress to Date, and Data Release

Status Update: Fall 2012

CPTAC Data Port AL Open Access to Profesonic Data

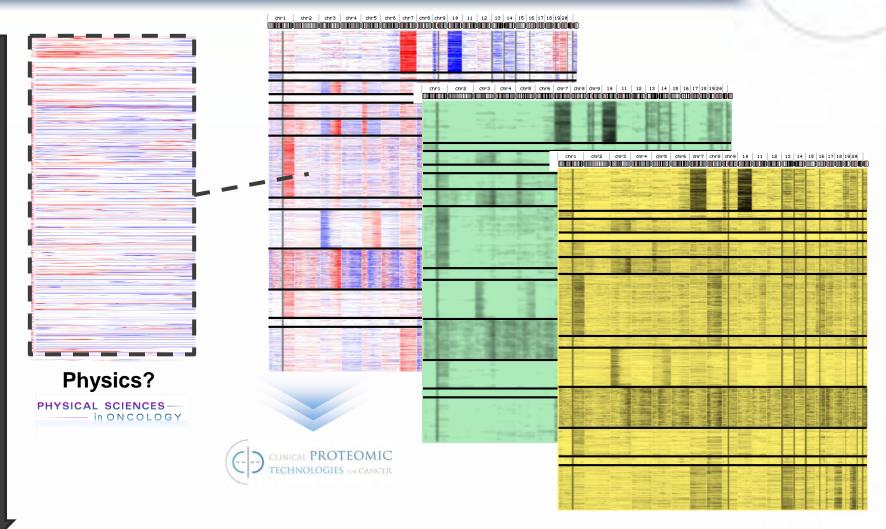
CPTAC DATA PORTAL Open Access to Profesonic Data

CPTAC DATA PORTAL Open Access to Profesonic Data


CPTAC DATA PORTAL Open Access to Profesonic Data

CPTAC Phase I Data Download >>

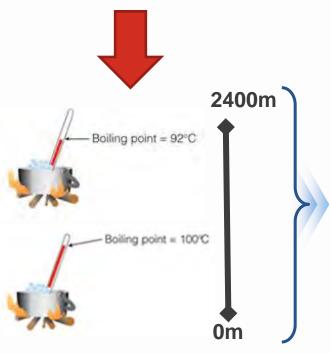
Several profeson Microbiology augustation studies in OPEC phase I profesonic data in which excluded by results the major interchargings contents of a marine profesonic action with a formation audits of the major interchargings contents and purposes. mass special material and the content of the major intercharging contents and purposes. mass special material and the content of the conte

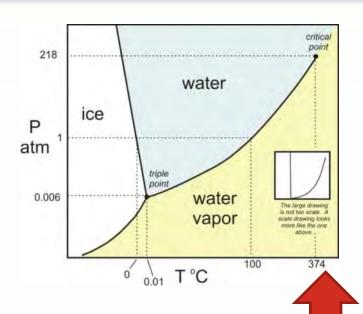

CPTAC grugram is in the process of

- Due diligence studies near completion
 - Cross network experiments show comparable lab-to-lab measurements
- Orthogonal proteomic platforms and analysis (proteome → genome vs. genome → proteome) reveal additional unexpected complexities
- Verifying new insights will require additional sample sets and development of novel analysis algorithms and techniques
- Public data portal access OPEN!
 (Phase I: 351 GB, Phase II: 616 GB)

Where Do We Go From Here? Is it <u>JUST</u> More Data?

Time? (Evolution)


Standards and Sharing of Data -> **New Insights and Understanding**



- Define samples & protocols
 - Share collected data

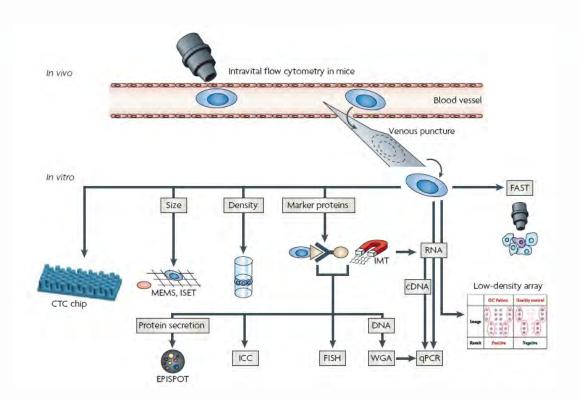
New Understanding

- Phase boundaries
 - V/L equilibrium
 - **Triple Point**

(Phase Diagram)

New Parameter

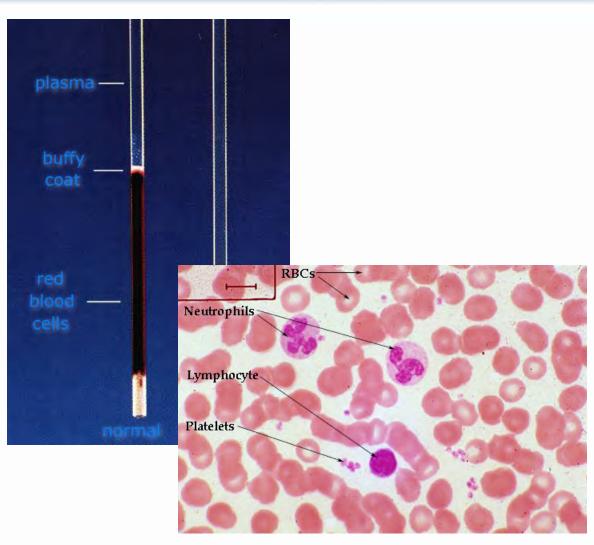
"Pressure"


	Sat	urated steam	Si	sperheated s	team	
Pressure (kg/cm ²⁾	Temp (°C)	Vapour enthalpy	Specific volume (m ² /kg)	Density (kg/mi)	Specific v (ms/l at 250°C	
-	00.1	(keal/kg)	0.00	0.500		
1	99,1	638,8	1,725	0,580	2,454	2,691
2	119,6	646,2	0,902	1,109	1,223	1,342
3	132,9	650,6	0,617	1,621	0,812	0,893
4	142,9	653,7	0,471	2,123	0,607	0,668
5	151,1	656,0	0,382	2,618	0,484	0,533
6	158,1	657,0	0,321	3,115	0,402	0,443
7	164,2	659,5	0,278	3,597	0,343	0,379
8	169,6	660,8	0,245	4,082	0,299	0,331
9	174,5	661,9	0,219	4,566	0,265	0,293
10	179,1	662,9	0,198	5,051	0,238	0,263
12	187,1	664,5	0,166	6,024	0,196	0,218
14	194,1	665,7	0,143	6,993	0,167	0,186
16	200,4	666,7	0,126	7,937	0,145	0,162
18	206,1	667,4	0,112	8,929	0,128	0,143
20	211,4	668,0	0,101	9,901	0,114	0,128
22	216,2	668,4	0,092	10,870	0,103	0,116
24	220,7	668,7	0,085	11,765	0,093	0,106
26	225,0	669,0	0,078	12,821	0,085	0,097
28	229,0	669,1	0,073	13,699	0,078	0,089
30	232,7	669,2	0,068	14,706	0,072	0,083

LOTS of **Quantitative** and Reproducible **Data**

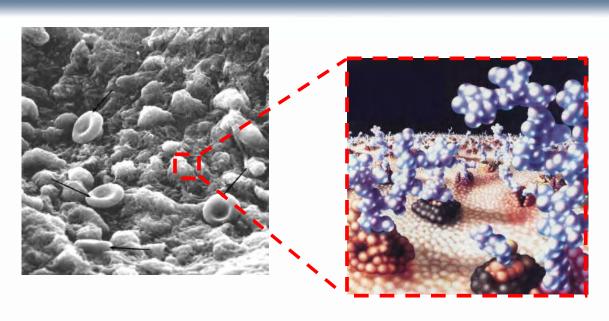
(Steam Table)

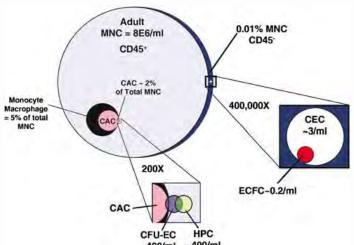
Your Dilemma: Finding the "needle"?



- Understanding of tumor cells in the blood has gained considerable attention in recent years, mainly due to advancements in technology
 - Disseminated tumor cells (DTCs) in the bone marrow
 - Circulating tumor cells (CTCs) in peripheral blood
- ~ 1 DTC/CTC per 10⁶ 10⁷ nucleated blood or BM cells

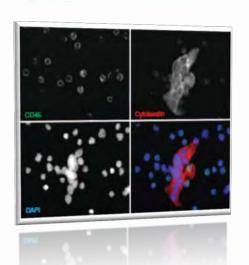
The "hay": the many components of blood




- ~5 liters
- Major elements
 - ~55% Plasma
 - Mostly water
 - Serum- clotting agents removed
 - ~45% erythrocytes
 - ~4-6 billion/ml
 - ~2-3 million/second
 - ~1% leukocytes
 - ~6-10 million/ml
 - o ~thrombocytes
 - ~200-500 million/ml

Sorting out which "needle"

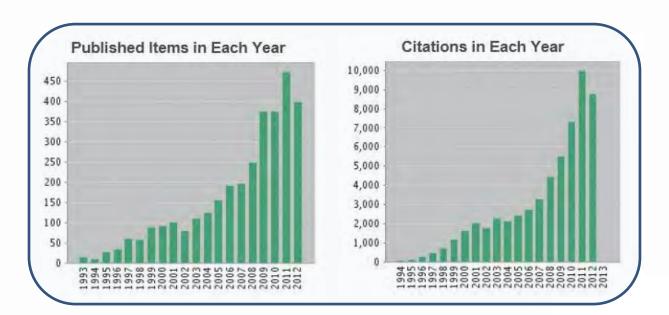
- Finding <u>A</u> "needle" is hard enough
- Even harder if there are "decoys" hidden within


Timing Seems Right...

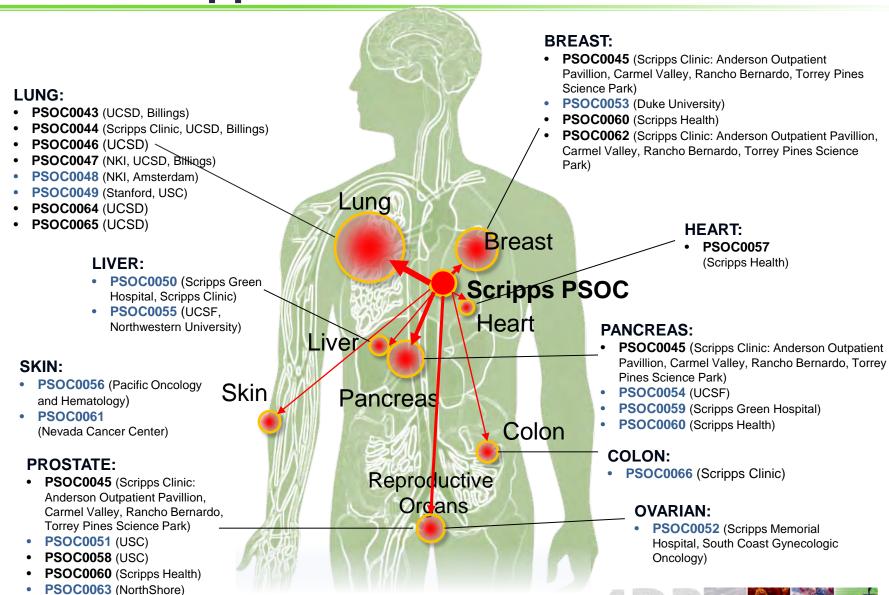
NEWS FEATURE

Beyond counting tumor cells

Since the discovery of circulating tumor cells in 1869, researchers have been able to do little else beyond count them. This is about to change, as advanced technologies for harvesting and analyzing rare cells from blood are opening the window for characterization. Jim Kling reports.



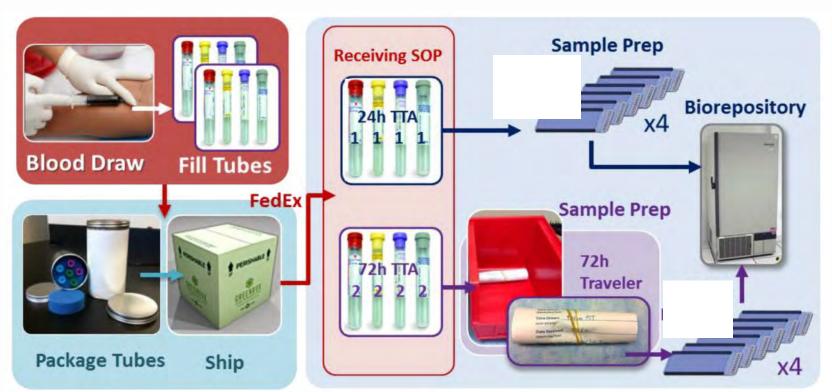
REVIEW



Considerations in the development of circulating tumor cell technology for clinical use

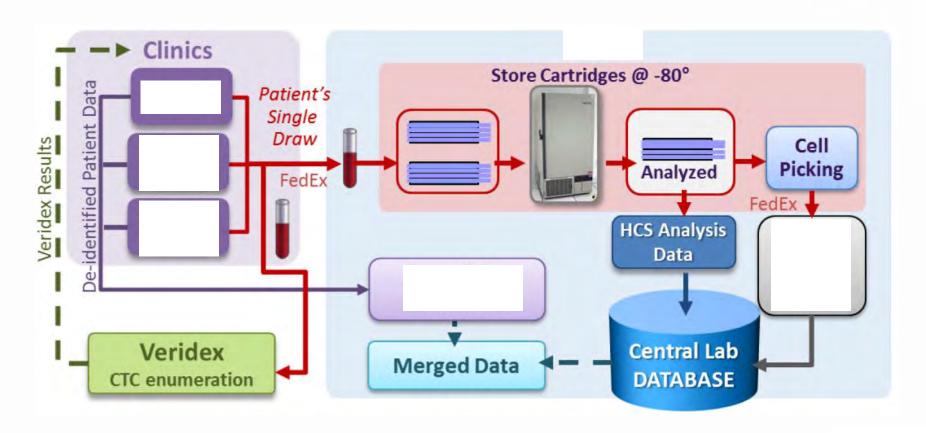
David R Parkinson^{1*}, Nicholas Dracopoli², Brenda Gumbs Petty³, Carolyn Compton⁴, Massimo Cristofanilli⁵, Albert Deisseroth⁶, Daniel F Hayes⁷, Gordon Kapke⁸, Prasanna Kumar⁹, Jerry SH Lee¹⁰, Minetta C Liu¹¹, Robert McCormack¹², Stanislaw Mikulski¹³, Larry Nagahara¹⁰, Klaus Pantel¹⁴, Sonia Pearson-White¹⁵, Elizabeth A Punnoose¹⁶, Lori T Roadcap¹⁷, Andrew E Schade¹⁸, Howard I Scher¹⁹, Caroline C Sigman³ and Gary J Kelloff¹⁰

Scripps PSOC Clinical Studies

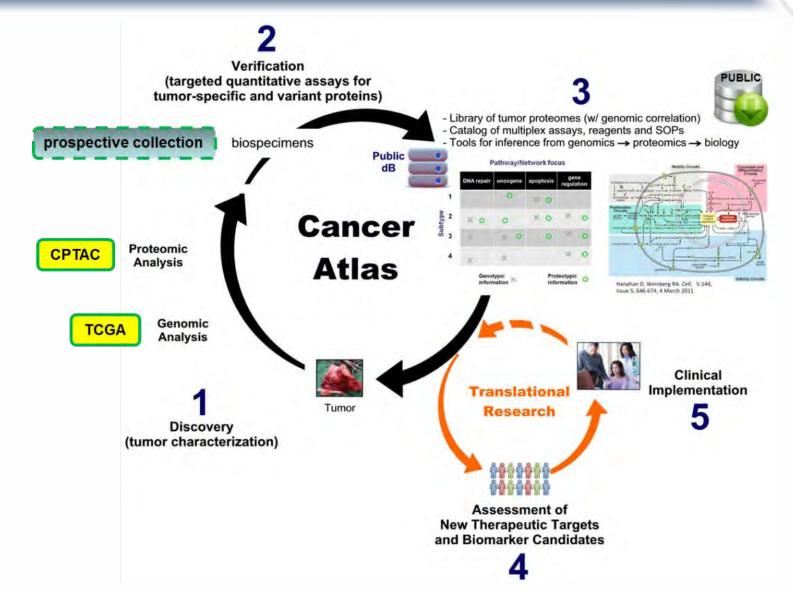


Pilot Project: Impact of pre-analytical variables on CTCs

Project Objective:

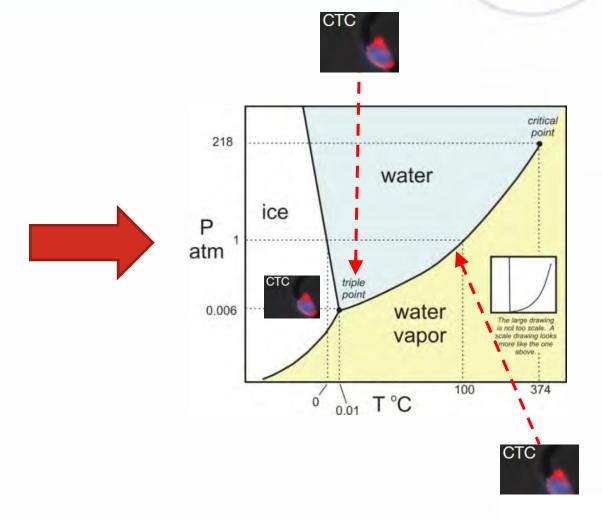

- Strengthen the research use and clinical utility of HCS CTC assays
- Develop SOPs using the best pre-analytical conditions for blood CHP (collection, handling, processing)
 - Blood collection tube type (Streck, EDTA, Citrate, Heparin)
 - Time to assay (24 and 72 hours)

Key Pilot Output: Public Release of Data



Results will be compared to the Veridex CellSearch® system and will be deposited in a publically available database

Is There A Place for CTCs...



Personal Prediction...

"LOTS of Quantitative and Reproducible Data"

	Sat	urated steam	St	sperheated s	neated steam	
Pressure (kg/cm²)	Temp (°C)	Vapour enthalpy (keal/kg)	Specific volume (m ³ /kg)	Density (kg/m ₁)	Specific v (ma/l at 250°C	
1	99,1	638,8	1,725	0,580	2,454	2,691
2	119,6	646,2	0,902	1,109	1,223	1,342
3	132,9	650,6	0,617	1,621	0,812	0,893
4	142,9	653,7	0,471	2,123	0,607	0,668
5	151,1	656,0	0,382	2,618	0,484	0,533
6	158,1	657,0	0,321	3,115	0,402	0,443
7	164,2	659,5	0,278	3,597	0,343	0,379
8	169,6	660,8	0,245	4,082	0,299	0,331
9	174,5	661,9	0,219	4,566	0,265	0,293
10	179,1	662,9	0,198	5,051	0,238	0,263
12	187,1	664,5	0,166	6,024	0,196	0,218
14	194,1	665,7	0,143	6,993	0,167	0,186
16	200,4	666,7	0,126	7,937	0,145	0,162
18	206,1	667,4	0,112	8,929	0,128	0,143
20	211,4	668,0	0,101	9,901	0,114	0,128
22	216,2	668,4	0,092	10,870	0,103	0,116
24	220,7	668,7	0,085	11,765	0,093	0,106
26	225,0	669,0	0,078	12,821	0,085	0,097
28	229,0	669,1	0,073	13,699	0,078	0,089
30	232,7	669,2	0,068	14,706	0,072	0,083

Relevant CSSI Funding Opportunities

http://cssi.cancer.gov/resources-current_funding.asp_

Provocative Questions (\$30M)

Due Date 12/04/12

Research Answers to NCIs Provocative Questions

0	Group A: RFA-CA-12-015 (R01)	[\$5-\$7M]
	RFA-CA-12-016 (R21)	[\$2-\$3M]
0	Group B: RFA-CA-12-017 (R01)	[\$5-\$7M]
	RFA-CA-12-018 (R21)	[\$2-\$3M]
0	Group C: RFA-CA-12-019 (R01)	[\$5-\$7M]
	RFA-CA-12-020 (R21)	[\$2-\$3M]
0	Group D: RFA-CA-12-021 (R01)	[\$5-\$7M]
	RFA-CA-12-022 (R21)	[\$2-\$3M]

Innovative Molecular Analysis Technologies (\$10.5M)

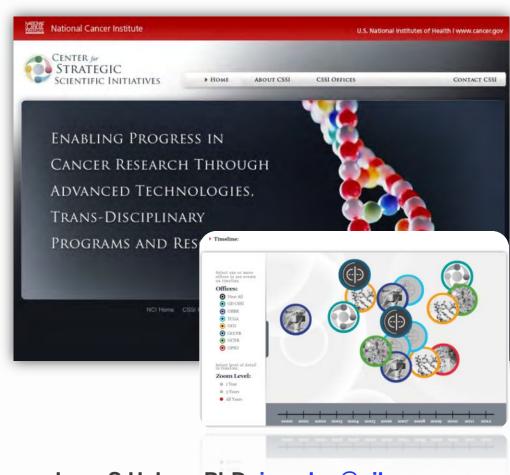
Due Date 02/20/13

•	Early-Stage	Innovative	Technology	Development	(R21)
---	-------------	------------	------------	-------------	-------

REA_CA_13_001 (R21 3 years)

	O	NI A-CA-13-001 (N21, <u>3 years</u>)	[42IAI]	
•	Validation and Advanced Development of Emerging Technologies (R33)			
	0	RFA-CA-13-002 (R33)	[\$3.5M]	

Early-Stage and/or Validating Technologies in Biospecimen Science (R21/R33)


0	RFA-CA-13-003 (R21)	[\$0.8M]
0	RFA-CA-13-004 (R33)	[\$0.7M]

Learn More About CSSI/CCG...

http://cssi.cancer.gov

Jerry S.H. Lee, PhD, jerry.lee@nih.gov

PQ Program Manager

Emily J. Greenspan, PhD

IMAT Program Director

Tony Dickherber, PhD

